Revisiting the expansion length of triple-base number system for elliptic curve scalar multiplication

نویسندگان

  • Yunqi Dou
  • Jiang Weng
  • Chuangui Ma
  • Fushan Wei
چکیده

Because of its sparsity, triple-base number system is used to accelerate the scalar multiplication in elliptic curve cryptography. Yu et al. presented an estimate for the length of triple-base number system at Africacrypt 2013. However, the efficiency of scalar multiplication is not only associated with the length of representation but also the numbers and costs of doubling, tripling, quintupling and addition. It is necessary to set a restriction for exponents of base 2, 3 and 5, which will lead to longer expansion length. In this situation, we prove a stronger result: the upper bound on expansion length of constrained triple-base number system is still sub-linear. This result provides more practical boundary of the triple-base number system to speed up the scalar multiplication. At the same time, it also generalizes the result of Méloni et al. about double-base number system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Expansion Length Of Triple-Base Number Systems

Triple-base number systems are mainly used in elliptic curve cryptography to speed up scalar multiplication. We give an upper bound on the length of the canonical triple-base representation with base {2, 3, 5} of an integer x, which is O( log x log log x ) by the greedy algorithm, and show that there are infinitely many integers x whose shortest triple-base representations with base {2, 3, 5} h...

متن کامل

Fast Scalar Multiplication in ECC using The Multi base Number System

As a generalization of double base chains, multibase number system is very suitable for efficient computation of scalar multiplication of a point of elliptic curve because of shorter representation length and hamming weight. In this paper combined with the given formulas for computing the 7Fold of an elliptic curve point P an efficient scalar multiplication algorithm of elliptic curve is propos...

متن کامل

Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains

In this work, we propose an algorithm to produce the double-base chain that optimizes the time used for computing an elliptic curve scalar multiplication, i.e. the bottleneck operation of the elliptic curve cryptosystem. The double-base number system and its subclass, double-base chain, are the representation that combines the binary and ternary representations. The time is measured as the weig...

متن کامل

On the Enumeration of Double-Base Chains with Applications to Elliptic Curve Cryptography

The Double-Base Number System (DBNS) uses two bases, 2 and 3, in order to represent any integer n. A Double-Base Chain (DBC) is a special case of a DBNS expansion. DBCs have been introduced to speed up the scalar multiplication [n]P on certain families of elliptic curves used in cryptography. In this context, our contributions are twofold. First, given integers n, a, and b, we outline a recursi...

متن کامل

Elliptic Curve Point Multiplication Using MBNR and Point Halving

-----------------------------------------------------------------------ABSTRACT---------------------------------------------------------The fast implementation of elliptic curve cryptosystems relies on the efficient computation of scalar multiplication. As generalization of double base number system of a number k to multi-base number system (MBNR) provides a faster method for the scalar multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017